EMBARCADERO
TECHNOLOGIESe

Tech Notes

Rapid database application development
with Firebird, Delphi®, and Embarcadero®
Change Manager™

Daniel Magin, http://www.DelphiExperts.net

March 2010
Corporate Headquarters EMEA Headquarters Asia-Pacific Headquarters
100 California Street, 12th Floor York House Level 2. 100 Clarence Street
San Francisco, California 94111 18 York Road Sydney NSW 2000

Maidenhead, Berkshire Australia
SL6 1SF, United Kingdom

CONTENTS

IVEFOTUCTION .ttt ettt -2-
ADEXPDIESS BASICS .iiieie ettt n et -4 -
IMIEEAAATA -ttt ettt -15-

REAAING METAAATA 1..ovii it -15-

Working actively With metadata ..o -23-
Using Embarcadero Change Manager with InterBase and Firebird.........cccoooooiiiiiiiiinnn, -40 -
CONCIUSTON .ttt ettt -49 -
ADOUL the AUTNOT ...t -50 -

INTRODUCTION

In the latest version of Delphi® and C++Builder® 2010, Embarcadero has added a variety of new
features, like IDE Insight, touch support, debugger enhancements, DataSnap® with JSON, etc.
The database interface has been given a new feature, among others, with the native dbExpress
Firebird driver. dbExpress was presented for the first time in Delphi 6. Since then, dbExpress
has been consistently further developed and completely revised in the version Delphi 2007. It
has also been provided with Pascal source code.

dbExpress sets itself apart with its open database communication, and it is this and the
implementation that make it easy for many manufacturers to realize. Delphi 2010 comes with
dbExpress drivers for InterBase®, Firebird, Oracle®, Microsoft® SQL Server, MySQL®, IBM® DB2°,
Informix®, Sybase® (ASA, ASE) and Blackfish™ SQL. You will also find manufacturers who provide
free and paid drivers for doExpress, e.g. for SAP, AS/400, PostgreSQL, SQlite, etc. doExpress
also offers the option to develop a multi-tier server architecture. For more information on multi-
tier development with DataSnap, allow me to refer you to the Delphi 2010 whitepaper by Bob
Swart, “Your data — where you want it, how you want it".

Firebird is a free, open source (www.firebirdsgl.org), relational database, which was developed
in 2000 and founded on the Open Source InterBase 6.0. This database itself is available for
different operating systems, like Windows®, Linux®, Mac® OS X, Solaris and HP-UX®. Delphi has
offered a dbExpress provider for InterBase since Delphi 6, and now, in the latest version of
Delphi and C++Builder, Embarcadero has also implemented a driver for Firebird.

Before we discuss how to set up a program with Delphi, we need to understand a few
dbExpress basics. By contrast with BDE or other database components, dbExpress does not
work bidirectionally, it functions in a unidirectional mode, like ADO.NET. dbExpress was
developed simultaneously for both frameworks (WIN32 and .NET). This is really easy to see if
you take a look at the dbExpress source code. Here you'll find compiler switches, e.g. “CLR"
which can be used in both frameworks.

{***}

{ }
{ Delphi Visual Component Library }
{ }
{ Copyright(c) 1995-2010 Embarcadero Technologies, Inc. }
{ }

}

{***

{SHPPEMIT '#pragma link '"DbxFirebird"'} {Do not Localize}
unit DbxFirebird;

interface

uses DbxDynalink,
{$IF DEFINED (CLR) }
DBXDynalinkManaged,
{SELSE}
DBXDynalinkNative,

http://www.firebirdsql.org/

{SIFEND}
DBXCommon, Classes, DbxFirebirdReadOnlyMetaData, DbxFirebirdMetaData,

SysUtils;

type
TDBXFirebirdProperties = class (TDBXProperties)

end;
{SIF DEFINED (CLR) }
TDBXFirebirdDriver = class (TDBXDynalinkDriverManaged)

{SELSE}
TDBXFirebirdDriver = class (TDBXDynalinkDriverNative)

{SIFEND}
public
constructor Create (DBXDriverDef: TDBXDriverDef); override;

end;

You will also find dbExpress and its DataSnap technology in the current version of Delphi Prism

(Delphi for the .NET framework). This makes it possible to program cross-platform
communication. However, Delphi Prism doesn’t include a dbExpress driver for Firebird.

DBEXPRESS BASICS

In this section we'll build an application using dbExpress to learn more about it and what
unidirectional mode means for developers.

First of all, we create a new VCL form application. In the dbExpress area of the Tool Palette you
will find the most important components for creating a connection with doExpress.

[ﬂ){ Tool Palette a

Q, search £ v| [} |
Data Access
Data Controls
|-| dbExpress

%g TSQLConnection

7 TSQLDataSet

nnij‘ TSQLQuery

% TsQLStoredProc

&5 TSQLTable

% T5glServerMethod

&, TSQLMonitor

=2 TsimpleDataSet
Datasnap Server
BDE

For our first example program we place the TSQLConnection on the form.

£ Project - Embarcadero RAD i 2010 U

File Edit Search View Refactor Project Run Component GExperts Tools W

NED DR -B|098/&82: p-NE| s ¢«

ﬁk Structure 722 | @& welcome Page | [B§ unit1
|+ ¥
=] Form1
7 o <?> {SQLConnection1}
4= Object Inspector oz
SQLConnectionl T5C0LConnecton E]
Properties | Events |
Connected [false
ConnectionName
* |Driver [=]
GetDriverFunc
KeepConnection true
LibraryName
LoadParamsOnConr [| false
LoginPrompt true
Mame SGQLConnectionl
Params (TStrings)
TableScope [tsTable, tsView]
Tag 8]
VendorLib

By using the properties Driver, LibraryName, VendorLib and Params, our instance
“SQLConnection1” can connect with the desired database. The Data Explorer in the Delphi IDE
gives you a simpler and reusable option. To create a new connection, we right click on the
desired database (here Firebird) and select form the context menu the item “Add New
Connection”.

g 5% Data Explorer BEs
3ty dbExpress

- BLACKFISHSAL

H-F DATASNAP

H-@ ASA

o[ASE

H-@ DB2

]..@

]__1@ | Refresh
- | Add Mew Connection
]..@

)
H-{ ORACLE

Migrate Data

£
£
£
£
£
£
£
£
£
£

?aProjeﬂ.dproj... | E}FModeI View @%Dam Explorer

In the following dialogue we can now define a name for your connection, e.g.
"EmployeeFirebird”. To be able to enter the respective parameters, we must select the new
connection, right click on it and select “Modify Connection”.

”p% Data Explorer oz
(0 dbExpress
-7 BLACKFISHSGL
- DATASNAP
+-FP ASA
&-FP ASE
-7 DB2
=& FIREBIRD
| -39 FBCONNECTION
@ﬁ EmployeeFirebird

- INFORMIX

- @ Refresh

- INTERBAS)
@ MSSQL Delete Connection
&-FP MYsaL Medify Connection
@ ORACLE Close Connection

Rename Connection

SQL Window

A wizard helps you to specify the respective connection settings. Using the “Advanced...”
button we could enter optional parameters for the connection, e.g. CharacterSet, Pooling,
Tracing, etc. When all the settings are correct, simply click on “Test Connection” to run through
a test.

F hl
Modify Connection ﬁ

Data source:

"dbExpress (dbExpress Provider)"

Datsbase Name: 127.0.0.1:cdb employee fdb
User Name: sysdba

Password: LTI

Advanced...

o) o)

b |

This example uses the database that is provided with the Firebird installation. After installing
Firebird, it is located in:

C:\Program Files\Firebird\Firebird_2_1\examples\empbuild\employee.fdb

Simply copy it into a directory like c:\db, so that you always have access to the original example
database.

In the Data Explorer we navigate to our new connection. To do this, we simply expand the
respective tree node.

0% Data Explorer qez
-39 FBCONNECTION -

=69

EI Tables
COUNTRY

CUSTOMER

DEPARTMENT —

- EMPLOYEE

-] Indices

----- f2n EMP_NO

----- f7g FIRST_NAME

----- B3 LAST_NAME

----- fn PHONE_EXT

----- {7y HIRE_DATE

----- fgg DEPT_ND

----- {7 JOB_CODE

----- {7 JOB_GRADE

----- fgy JOB_COUNTRY

----- & SALARY

----- f7g FULL_NAME

- EMPLOYEE_PROJECT

E-E JOB

-8 PROJECT

E:I"'

-

]...

m

g PROJ_DEPT_BUDGET

2 SALARY_HISTORY

£ SALES

E- Py Views

@y PHONE_LIST

@ Procedures -

Qmprojectz.dproj... B Madel View 0% Data Explorer

Back to our “SQLConnection1”: in the ConnectionName property we can now select our
created connection “EmployeeFirebird”. All the parameters we have defined for the database
are now copied directly to the instance, i.e. if we change the parameters in the Data Explorer
these are not automatically changed in the instance parallel. However, you can achieve this by
selecting the ConnectionName property again. This is a major difference compared to the old
BDE (Borland Database Engine) and it gives the advantage that you do not have to distribute
configuration files as you did before with the old BDE.

Default Layout

@

SQLConnectionl TSOLConnecton

File Edit Search View Refactor Project Run Component GExperts Tools Window Help
MEHm D H-8|8E B2 P -NIE| 7 €«-»~' &
ﬁk Structure Lk ﬂWelmme PageI Unitil
| ¥)
E!D Form1 @ Forml EI@
g, FIREBIRD {5QLConnection1} S Lo
#= Object Inspector | |

Components to Code Copy Component Names

Properties | Events | o
Connected [T false s
ConnectionMame | EmployeeFirebird L
Driver FIREBIRD | [
GetDriverFunc getSQLDriverINTERBASE
KeepConnection true
LibraryMame dbxfb.dll
LoadParamsOnConerﬁlse N
LoginPrompt [true Lo
Mame SQLConnectonl | | oo
>» Params {TStrings) Gl &
TableScope [tsTable, tsView] -
Tag 0 @ Value List editor
Vendorlib fhclient.dll
Key
drivername
blobsize
commitretain
Database
localecode
password
rolename
sqldialect
isolationlevel
USEr_name
waitonlocks
Save connection parameters
Reload connection parameters Rename Components..

Value

-1

False
127.0.0.1:c:\db'\employee. fdb
0000
masterkey
RoleMame

3
ReadCommitted
sysdba

True

) [|

I O

Help

]

Now we can finally display our first data in our form. To do this, we place the following
components on our form:

1. TSQLQuery
a. Property Name: gry_customer
b. Property SQLConnection: SQLConnection
c. Property SQL: select * from customer

d. Property Active: True
2. TDataSource
a. Name: ds_gry_customer
b. Property DataSet: gry_customer

3. The already existing SQLConnection1 is changed as follows:

a. Name: con_employee
b. LoginPrompt: False; so we don't have to enter a password each time

éFiIe Edit Search View Refactor Project Run Component GExperts Tools Window Help % : Defadltla

FEN -80S IE82: b-IE| s ¢~ %~ &

& Structure 152 | @3 welcome Page Unitl]
E| 4w)
E}ﬂ Query {gry_customer} o € Form1 (= [@ =]
W ds_gry_customer | [o
& Fields =
+= Object Inspector 733 - Bl
Pl
con_employee TSQLConnection . gry_customer. . _ds_gry_customer:
Properties | Events |
Connected [¥] true
ConnectionMame | EmployeeFirebird
Driver FIREBIRD
GetDriverFunc getSQLDriverINTERBASE
KeepConnection frue
LibraryMame dbocfb.dll
loaparamsOnCor [fase
» |LoginPrompt o E
Mame con_employee
Params (TStrings)
TableScope [tsTable, tsView]
Tag o]
VendorLib fhclient.dll

To understand the difference between a uni- and bidirectional database connection, we now
place a TDBGrid on our form and try to set its property DataSource to our ds_gry_customer.
Contrary to BDE, ADO or ODBC connections, we receive an error message.

& Frajects - Embarcadere KAL) Studio 2010 - Ut

File Edit Search View Refactor Project Run Component GExperts Tools Window Help {4 | Default Layout
MEm D I-88& @&z b-lIE|ss €~~~ @
ﬁk Structure nigz ﬂWeIcome Pagel Unitl]
e |+ ¥

-&Columns

=8 FIREBIRD {ron_employee)
E}H‘ Query {gry_customer}

4 [»

4= Object Inspector 0
DBGrid1 TDEGrid

Properties | Events |

[x]E

Align alrone - .
AlignwithMargins |[] false il :
Anchors [akLeft,akTop] [| -
BiDiMode bdLeftToRight - g Y
BorderStyle bsSingle e @ Error “
Color [dwindow |
Columns (TDBGridColumns) [@ Operation not allowed on a unidirectional dataset.
Constraints (TSizeConstraints) |
CH3D V] true -
Cursor crDefault - — . -
CustomHint SRRSSERERE | ok | Details>
|\DataSource ds_gry_customer =]
DefaultDrawing tfrue
DragCursor cDrag =

What does this error message mean? The database APl interfaces gds32.dll for
InterBase/Firebird, OCIL.dIl for Oracle, etc. don't do much. They create interfaces for the
connection and execution of SQL statements, for fetching results, etc. It is a great myth that
these database vendor libraries are also responsible for the caching of data. This was done by
BDE, ADO, etc. up to now. However, many programmers have truly violated this mechanism
and used Table and Query components to display all the data and used these to filter and
navigate, and virtually force all the data for all the clients through the network. Today,
architectures use a completely different principle. Even Microsoft has completely changed its
old architecture ADO to ADO.NET and some maintain: “It is only these first three letters that
have remained”. The greatest difference between uni- and a bidirectional database
connections is that there is no longer an intermediate layer that caches the result. This must be
implemented in the client. This task is carried out in its entirety by one component. But in order
to understand this, we must first of all manually build a cache.

One of the most powerful components, TClientDataSet, can do this for us. In the past, some
developers who used TClientDataSet complained about having to supply a Midas.dll. Since
Delphi 7 you have been able to eliminate the Midas.dll by adding midaslib in the uses clause.
For friends of the Midas.dll, it is worth mentioning that Delphi 2010 includes the source code
(finally).

Now let’s return to our project; so we do not need to distribute the Midas.dll, we add the unit
Midaslib to the uses clause.

unit Unitl;
interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs,
midaslib; //<-- no midas.dll deployment required

type
TForml = class (TForm)
con_employee: TSQLConnection;

We now also place the following components on our form:
B =
A

1. TDataSetProvider
a. Property Name: dsp_customer
b. Property DataSet: gry_customer
2. TClientDataSet
a. Property Name: cds_customer
b. Property ProviderName: dsp_customer

3. The already existing component ds_customer (TDataSource)
a. Property DataSet: cds_customer

4. The already existing component TDBGrid
a. Property DataSource: ds_customer

If we now set the property Active of cds_customer to True, the data appears in the grid.

-
@'Fnrml =N ES
O " S
..... B}{EJ-"@ED_'
| ?ﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁ oex|. E-_I.Eﬂﬁﬁﬁﬁﬁﬁﬁﬁ | R
.con_employee. | | | gry_customer. | dsp_customer! -ods_customer. | ds_gry_customer.
CUST NO CUSTOMER. COMNTACT _FIRST CONTACT_LAST >
3 1001 Signature Design Dale 1. Litte |=|
1002 Dallas Technologies Glen Brown 4
1003 Butte, Griffith and Co. James Buttle
1004 Central Bank Elizabeth Brocket
1005 DT Systems, LTD. Tai Wu
1006 DataServe International Tomas Bright
[b

"

What has just happened? Let’s start from the beginning:

1. The SQLConnection creates the physical connection to the database

2. The query contains the SQL statement

3. The provider is a supplier or the communicator between the query and the
ClientDataSet

4. The ClientDataSet is the buffer and this is where data is copied

The whole thing looks very complicated and will confuse some readers who havent worked with
dbExpress before. Query, Provider and ClientDataSet are also summarised in one component:

TSimpleDataSet.
To be able to now show all employees in our project, we proceed as follows:

1. TSimpleDataSet
a. Property Name: sds_employee
b. Property Connection: con_employee
c. Property DataSet->CommandText: select * from employee
d. Property Active: True
2. TDataSource

a. Property Name: ds_employee
b. Property DataSet: sds_employee
3. TDBGrid
a. Property DataSource: ds_employee

@Furml | = || [=] ||i3|
ZZZZZPE_)QZZZZZZZZZE ZZZZZZE'I*@ZZZZZZZZ_EZZZZZZZZ I
R | D T 4 B 4 - - - | R Sl
.con_employee. . | | | gry_customer. _dsp_customer. | | cds_customer. | ds_gry_customer.
CUST_MO CUSTOMER CONTACT_FIRST CONMTACT _LAST -
3 1001 Signature Design Dale 1. LitHe =
1002 Dallas Technologies Glen Brown
1003 Buttle, Griffith and Co. James Buttle
1004 Central Bank Elizabeth Brocket
1005 DT Systems, LTD. Tai Wiu
1006 DataServe International Tomas Bright
4 }
o fEE E;"ZZ
...... DEx|....... +*
sds_employee. . ds_employee . ..
EMP NO FIRST MNAME LAST MAME PHONE_EXT HIRE DAT = |- - - - -
4 2 Robert Nelson 250 12/28/198 | ;0
4 Bruce Young 233 12/28/198 | - - . - .
5 Kim Lambert 22 2/6/1939 T
2 Leslie Johnson 410 4/5/1989 T
3 Phil Forest 229 417/1959 L
11 K. 1. Weston 34 1/17/1990 | - - . - .
4 P S

We place 2 TDBNavigator components on the form and set the DataSource property to the
respective DataSource components. When we compile and execute our project, we can view
and edit all the data, but when we end the program and restart, we will see that the changes
have not been saved in our Firebird database. Those who have taken notice so far will probably
realise why this is the case. So far, the data has been copied to our data cache TClientDataSet
or TSimpleDataSet, i.e. the changes have been saved here and not in the database. To ensure

the changes are also immediately saved in the database, we must insert, for example, the
following line in the event AfterPost of the sds_Employee:

procedure TForml.sds employeeAfterPost (DataSet: TDataSet);
begin

sds_employee.ApplyUpdates (0) ;
end;

After recompiling and executing the application, we should now be able to see our changes
saved in the Firebird database.

The individual components in the dbExpress Tool Palette:

l'ijc Tool Palette o
&, Search E v| Q |

Data Access

Data Controls

[= dbExpress

w3 TSQLConnection

8= T5QLDataset

= TSQLQuery

“* TS0LStoredProc
= T5OLTable

& TsqlserverMethod
&, TsQLMonitor

=2l TSimpleDataSet
Datasnap Server
BDE

dbExpress is made up of several "slim" database components which offer quick access to the
SQL database server. dbExpress provides a driver framework for each supported database, and
this adapts the server-specific software to the dbExpress interfaces. When we deploy a
database application that uses dbExpress, we include a DLL (the server-specific driver) in the
application files that you have created.

dbExpress enables us to quickly access databases whilst using unidirectional data sets.
Unidirectional data sets are designed for a speedy, simple access to the database information,
and, in doing so, require minimum extra effort. As with other data sets, we can send a SQL
command to the database server, and, if the command returns several data records, we can
receive these data records. Unidirectional data sets do not carry out a caching of the data,
which makes them quicker and less resource-dependent than other data set types.

The category, dbExpress in the Tool Palette contains components that use dbExpress to access
database information. These are:

1. TSQLConnection
Encapsulates a dbExpress connection to a database server.
2. TSQLDataSet
Represents all the data available via dbExpress or sends commands to a database which

is being accessed by dbExpress.

TSQLQuery

A query data set that encapsulates a SQL statement and allows applications to access
the result data sets.

TSQLTable

A table data set which represents all the lines and columns of an individual database
table.

TSQLStoredProc

A data set based on stored procedures, which executes a stored procedure that is
defined on a database server.

TSQLMonitor

Catches the information that is being sent between a SQL connection component and a
database server and saves this in a string list.

TSimpleDataSet

A client data set, which retrieves data using the internal objects of type TSQLDataSet
and TDataSetProvider and commits updates.

METADATA

READING METADATA

A dbExpress provider must be derived from specific interfaces. By deploying the source of
dbExpress we can also carry out a detailed analysis of the sources of the Firebird provider. The
source code of the Firebird provider and also those of other databases can be found in the
directory:

C:\Program Files\Embarcadero\RAD Studio\7.0\source\database\

L
"5l Recent Places

- Libraries
@ Documents

J' Music

[E=| Pictures

i Videos
*d Homegroup

Ll Computer

?! Metwork

55

P8 DEXDb2MetaData

P8 DBXDb2MetaDataReader

P8 DBXDb2MetaDataWriter

P8 DBXDb2ReadOnlyMetaData
P8 DBXDBMetaData

P8 DEXDEReaders

PH DBXDefaultTestDriverUnits
E DBXDelegate

P8 DEXDynalink

P8 DBXDynalinkNative

P8 DbxFirebird

P® DBXFirebirdMetaData

P8 DBXFirebirdMetaDataReader
P8 DEXFirehirdMetaDataWriter
3 DBXFirebirdRead OnlyMetaData
E Dbxdnformix

m DBXInformixMetaData

E DBXInformixMetaDataReader
3 DBXInformixMetaDataWriter
3 DBXInformixReadOnlyMetaData
E Dbudnterbase

3 DBXInterbaseMetaData

E DBXInterbaseMetaDataReader

8/1/2009 11:00 PM
8/1/2009 11:00 PM
8/1/2009 11:00 PM
8/1/2009 11:00 PM
8/1/2009 11:00 PM
8/1/2009 11:00 PM
8/1/2009 11:00 PM
8/1/2009 11:00 PM
8/1/2009 11:00 PM
8/1/2009 11:00 PM
8/1,/2009 11:00 PM
8/1,/2009 11:00 PM
8/1/2009 11:00 PM
8/1,/2009 11:00 PM
8/1/2009 11:00 PM
8/1/2009 11:00 PM
8/1/2009 11:00 PM
8/1/2009 11:00 PM
8/1/2009 11:00 PM
8/1/2009 11:00 PM
8/1/2009 11:00 PM
8/1/2009 11:00 PM
8/1/2009 11:00 PM

- || O X
? ‘—-)\ | 1/ =« RADStudio » 7.0 » source » database » v Search database Fe)
Organize » @Open New folder =« il @
<A - Name Date modified Type Size 0
- Favorites o
[UbBAUatastorereadUnlyivietallata B LAAUUY 11U IV Lelphi source File
M Desktop i))
E DbxDb2 8/1/2009 11:00 PM Delphi Source File
4 Downloads

Delphi Source File

Delphi Scurce File 2
Delphi Scurce File ‘

Delphi Source File
Delphi Scurce File

Delphi Source File 5
Delphi Socurce File

Delphi Source File 4
Delphi Source File 9
Delphi Scurce File I

Delphi Source File I
Delphi Source File

Delphi Scurce File 4.
Delphi Source File I
Delphi Socurce File

Delphi Source File

Delphi Source File

Delphi Scurce File g
Delphi Source File

Delphi Source File

Delphi Socurce File |
Delphi Source File

Delphi Scurce File 4.

=

5 items selected Date modified: 8/1/2009 11:00 PM

Size: 56.5 KB

Date created: 8/1,200911:00 PM

Each database has internal system tables, and these are RDB$ tables in InterBase/Firebird. The
complete skeleton of the respective database is located in these. You should never make any
changes here. It is very easy to destroy a database if you dont know what you're doing. If you
want to read the metadata of the database, you need different SQL statements depending on
the database manufacturer. However, a dbExpress provider presents us with complete methods
for this. All providers are derived from specific abstract classes; we can find such a basic class in
the unit DBXMetaDataReader.pas (line 251):

TDBXMetaDataReader = class abstract
public
function FetchCollection (const MetaDataCommand: UnicodeString) :
TDBXTable; wvirtual; abstract;
function FetchCollectionWithStorage (const MetaDataCommand:
UnicodeString): TDBXTable; wvirtual; abstract;
protected
procedure SetContext (const Context: TDBXProviderContext); wvirtual;
abstract;
function GetContext: TDBXProviderContext; virtual; abstract;
function GetProductName: UnicodeString; wvirtual; abstract;
function GetVersion: UnicodeString; wvirtual; abstract;
procedure SetVersion (const Version: UnicodeString); wvirtual; abstract;
function GetSglIdentifierQuotePrefix: UnicodeString; virtual; abstract;
function GetSglIdentifierQuoteSuffix: UnicodeString; virtual; abstract;
function IslLowerCaseldentifiersSupported: Boolean; wvirtual; abstract;
function IsUpperCaseldentifiersSupported: Boolean; virtual; abstract;
function IsQuotedIdentifiersSupported: Boolean; virtual; abstract;
function IsDescendingIndexSupported: Boolean; virtual; abstract;
function IsDescendingIndexColumnsSupported: Boolean; virtual; abstract;
function GetSglIdentifierQuoteChar: UnicodeString; wvirtual; abstract;
function GetSglProcedureQuoteChar: UnicodeString; wvirtual; abstract;
function IsMultipleCommandsSupported: Boolean; virtual; abstract;
function IsTransactionsSupported: Boolean; virtual; abstract;
function IsNestedTransactionsSupported: Boolean; virtual; abstract;
function IsSetRowSizeSupported: Boolean; virtual; abstract;
function IsSPReturnCodeSupported: Boolean; wvirtual; abstract;
public
property Context: TDBXProviderContext read GetContext write SetContext;
property ProductName: UnicodeString read GetProductName;
property Version: UnicodeString read GetVersion write SetVersion;
property SgllIdentifierQuotePrefix: UnicodeString read
GetSglIdentifierQuotePrefix;
property SgllIdentifierQuoteSuffix: UnicodeString read
GetSglIdentifierQuoteSuffix;
property LowerCaseldentifiersSupported: Boolean read
IsLowerCaseldentifiersSupported;
property UpperCaseldentifiersSupported: Boolean read
IsUpperCaseldentifiersSupported;
property QuotedIdentifiersSupported: Boolean read
IsQuotedIdentifiersSupported;
property DescendingIndexSupported: Boolean read
IsDescendingIndexSupported;
property DescendingIndexColumnsSupported: Boolean read
IsDescendingIndexColumnsSupported;
property SgllIdentifierQuoteChar: UnicodeString read
GetSglIdentifierQuoteChar;
property SglProcedureQuoteChar: UnicodeString read

GetSglProcedureQuoteChar;
property MultipleCommandsSupported: Boolean read
IsMultipleCommandsSupported;
property TransactionsSupported: Boolean read IsTransactionsSupported;
property NestedTransactionsSupported: Boolean read
IsNestedTransactionsSupported;
property SetRowSizeSupported: Boolean read IsSetRowSizeSupported;
property SPReturnCodeSupported: Boolean read IsSPReturnCodeSupported;
end;

TDBXMetaDataReader is an abstract class, i.e. classes that are derived from this must also
implement its methods. If, for example, you derive from the interface or abstract classes , you
enter a contract. For example, TDBXBaseMetaDataReader is derived from this class and from
this again TDBXFirebirdCustomMetaDataReader and then from this again
TDBXFirebirdMetaDataReader.

In order to document the complete structure of dbExpress, this whitepaper will skip over some
things, but here’s a brief overview of the most important classes for the Firebird dbExpress
provider:

llzl BXCommon.TDBXDriver

A

BEXCommon TDBXCommandFactory |

T

DBXCommon. TDBXCommandFactory
2 XMetaDataCommandFactory TDBXMetaDataCommandFactory

T

DBXMetaDataCommandFactory. TDBXMetaDataCommandFactory
DBXFirebi d Data. TDBXFirebi DataC: dFactory

DBXCommon.TDBXDriver
D XDynalink. TDBXDynalinkDriver

DBXDynalink. TDBXDynalinkDriver
" XDynalinkNative TDBXDynalinkDriverNative

DBXDynalinkNative. TDBXDynalinkDriverNative
DbxFirebird. TDBXFirebirdDriver

)

 XMetaDataReader TDBXCustomMetaDataTable

LEP DBXCommonTable. TDBXTable
Ll

[@axr' bi iter TDBXFirebi iter |

[EPXMeBDahReadeﬂ'DBXBaseMeIaDahReader] ‘L

DBXMetaD iter. TDBXBaseMetaData\Writer
XFirebi iter TDBXFirebirdC: i
)

v
(BpXMetaDataWriter TD! iter | {{gexcommonTabie. mexnwD

Take a look in the unit DBXFirebirdMetaDataReader.pas (line 86):

TDBXFirebirdMetaDataReader = class (TDBXFirebirdCustomMetaDataReader)

protected
function GetProductName: UnicodeString; override;
function IsDescendingIndexSupported: Boolean; override;
function IsDescendingIndexColumnsSupported: Boolean; override;
function IsNestedTransactionsSupported: Boolean; override;
function GetSglForTables: UnicodeString; override;
function GetSglForViews: UnicodeString; override;
function GetSglForColumns: UnicodeString; override;
function GetSglForIndexes: UnicodeString; override;
function GetSglForIndexColumns: UnicodeString; override;
function GetSglForForeignKeys: UnicodeString; override;
function GetSglForForeignKeyColumns: UnicodeString; override;
function GetSglForProcedures: UnicodeString; override;
function GetSglForProcedureSources: UnicodeString; override;
function GetSglForProcedureParameters: UnicodeString; override;
function GetSglForUsers: UnicodeString; override;
function GetSglForRoles: UnicodeString; override;
function GetReservedWords: TDBXStringArray; override;

end;

This class is interesting for the reason that TDBXFirebirdMetaDataReader makes available
methods that provide us with the respective metadata SQL statements. In the implementation
for the method GetSqlForTables we find:

function TDBXFirebirdMetaDataReader.GetSglForTables: UnicodeString;
begin
Result := 'SELECT NULL, NULL, RDBSRELATION NAME, CASE WHEN RDBSSYSTEM FLAG
> 0 THEN ''SYSTEM TABLE'' WHEN RDB$VIEW_SOURCE IS NOT NULL THEN ''VIEW'' ELSE
''"TABLE'' END AS TABLE TYPE ' +
'"FROM RDBSRELATIONS ' +
'WHERE (1<2 OR (:CATALOG NAME IS NULL)) AND (1<2 OR (:SCHEMA NAME

IS NULL)) AND (RDB$RELATION_NAME = :TABLE NAME OR (:TABLE_NAME IS NULL)) ' +
' AND ((RDB$SYSTEM_FLAG > 0 AND :SYSTEM_TABLES:"SYSTEM TABLE'")
OR (RDB$VIEW_SOURCE IS NOT NULL AND :VIEWS=''VIEW'') OR (RDB$SYSTEM_FLAG =0
AND RDB$VIEW_SOURCE IS NULL AND :TABLES=''TABLE'')) ' +
'ORDER BY 3';
end;

This SQL statement also has parameters for Catalog and Schema, etc., which are then
completed by a parent class. If we now execute a simplified SQL statement (without the
parameters) directly with iSQL on Firebird, we obtain all the tables back from our database.

BN CA\Windows\system32Z\cmd.exe - isqlexe -user sysdba -password masterkey c\db\EMPLOYEE.FDB =& [

PLO DB
1 PLO DB
¥ } RDBS H f 0 f } RDVH) f RDVH)
0 OA RDE _PR 0 RDVH ARA } RDVH)
0 RDE 1 f } RDVH D_PO 0 } RDBS T f OUH
0 . " RDE "
0 M
0 1
0 M RDE) 1 [
0 RDE A RA 1)
0 RO RDBZ R f 0) } RDVH)
0 H RDE) OUH RDVH) f
0 ORDER B [RDH D_PO 0

RDESUIEW_CONTEXT
3 <null> 8 <null>

<null> <null>
<null’> RDESVIEW_RELATIONS
RDESCONTERT _NAME

4 <null> 8 <null>
3

3
<null> SALARY_HISTORY
EMP_NO

<null> 8 <null>
<null>

CHANGE_DATE

a
<null> SALARY_HISTORY

]
8 <null>
<null>

SALARY_HISTORY
UPDATER_ID

8
3 <null> 8 <null>
]

a
SALARY_HISTORY
OLD_SALARY

8
<null> 8 <null>
<null>

PERCENT _CHANGE
8
5:974 8 <{null>

1
<null> SALARY_HISTORY

5
<null> <null>

<null> SALARY_HISTORY
NEW_SALARY

[<null> 8 <null>
<null> <null>
<null’> SALES
FO_MNUMEER
]
<null> 8 <null>
]

]
<null> <null> SALES
CUST_MNO

8
a <null> 8 <null>

You can also find respective implementations for all other databases in the MetaDataReader
implementations for the individual databases:

C:“Program Files“Embarcadero~RAD Studio™~?.B@zourcedatabase>dir =*=MetaDataHeader
NEES

Uolume in drive C has no label.

Uolume Serial Mumber iz 3I811-7683

Directory of C:sProgram Files“Embarcadero“~RAD Studio~?.Bssource~databasze

18:-68 23.712 DBiDataStoreMetaDataReader.pas
18:-68 27.1280 DBiDbhZMetaDataReader.pas
18:-68 45,148 DBiFirehirdMetalataReader.pas
18:-68 DBRInformixMetaDataReader.pas
18:-68 DBRInterbaszeMetalDataReader.pas
18:808 DBEMetaDataReader.pas
18:808 DBEMSSQLMetaDataReader. pas
18:808 DBEMySglMetaDataReader. pas
18:808 DBEOracleMetaDataReader.pas
18:808 DBESvyhaseASAMetaDataReader. pas
18:88 DBESvyhaseASEMetaDataReader. pas
11 File<s> hytes
B Dircs>» 282,.846.066.688 hytes free

If we want to read the metadata from our Firebird database without any knowledge of system
tables, the dbExpress system helps thanks to its uniform structure. For this purpose, we once
again create a new VCL form application and, as in our first example, we place a
TSQLConnection on our form and set the following properties:

1. ConnectionName: EmployeeFirebird
2. LoginPrompt: False
3. Connected: True

Furthermore, we place two TListbox and a TButton on our form and the whole thing should look
like this:

The aim is to show all the tables (without system tables) in the left listbox and then click to add
the columns of the selected table in the right listoox. We start off by implementing the button
click method:

procedure TForml.ButtonlClick (Sender: TObject) ;
begin

ListBoxl.Items.Clear;

SQLConnectionl.GetTableNames (ListBoxl.Items, false);
end;

Our SQL connection has a multitude of Get.... Methods:

GetFieldNames(const TableName:
GetiIndexNames(const Tabl
GetProcedureNames{List:

GetPackageNames(List: TStrr
procedure GetSchemaNames(List: TStrings);

procedure GetCommandTypes{List: TWideStrings);

procedure GetServerMethodNames(List: TWideStrings);

function GetDefaultSchemaName: string;

procedure GetProcedureParams(ProcedureName: string; List: TList);
procedure GetTableNamesi(List: TStrings; SystemTables: Boolean = False);

function GetloginUsername: string;

property GetDriverFunc: string;

function GetEnumerator: TComponentEnumerator;
function GetParentComponent: TComponent;

function GetNamePath: string;

function GetlInterface{const IID: TGUID; out Obj): Boolean;
function GetinterfaceEntry(const IID: TGUID): PinterfaceEntry;
function GetlInterfaceTable: PinterfaceTable;

function GetHashCode: Integer;

For the GetTableNames there are several overloads. The one used the most is the one in which
the first parameter specifies a TStrings object in which the elements are to be stored. The
second parameter indicates whether or not system tables are to be output. We will use
precisely this overload for the button click method.

We now implement the Listbox1 click event:

procedure TForml.ListBox1lClick(Sender: TObject);

var
sSelectedTableName: string;

begin
ListBox2.Items.Clear;
sSelectedTableName:=ListBoxl.Items.Strings[ListBoxl.ItemIndex];
SQLConnectionl.GetFieldNames (sSelectedTableName, ListBox2.Items) ;

end;

First of all, we delete the contents in the right listbox, then read the selected table names in the
left listbox and finally use the GetFieldNames method to complete the right listbox with the
respective table names. The great thing about this architecture is that, irrespective of which
database is used with the dbExpress connection, we obtain the meta data without having to
know the system tables.

’ GetTables

COUNTRY
CUSTOMER
DEPARTMENT
EMPLOYEE _PROJECT
108

PHONE_LIST

DEPT_NO
EMP_NO
FIRST_NAME
FULL_MAME
HIRE_DATE
JOB_CODE
JOB_COUNTRY

PROJ_DEPT_BUDGET
PROJECT LAST_MAME
SALARY_HISTORY PHONE_EXT
SALES SALARY

JOB_GRADE

WORKING ACTIVELY WITH METADATA

With the dbExpress metadata architecture we can read the meta data of several databases via
an architecture, and we can even use this to actively manipulate all the supported databases. To
do this, we create a new VCL form application with which we want to create a new table on the
Firebird database server. Using this application we can create this table with the identical code
for Oracle, MSSQL, InterBase, MySQL, etc.

We use the Data Explorer to check that no DelphiExperts table exists in our employee
database.

p% Data Explorer
@ ASE

=@ DB2
-7 FIREBIRD
- @9 FBCONNECTION

EI % EMPLOYEEFIREBIRD

' Tables
- COUNTRY
- CUSTOMER
--' DEPARTMENT
EMPLOYEE
EMPLOYEE_PROJECT
JOB
PROJECT
PROJ_DEPT_BUDGET
--' SALARY_HISTORY
- SALES
Views
Procedures
Functions

0 Synonyms

: H

T T % B G T

{0 s W ey O |
i LR

We place a TSQLConnection on our form and set the ConnectionName property to our
EmployeeFirebird entry from the Data Explorer.

E’Emje{ﬂ - Embarcad

File Edit Search View Refactor Project Run Component GExperts Tools Window Help @ Default Layout '| ﬁj%
FET hH-Blag ad b - | & & G- @
ﬂ\strucmre g ﬂWelmmePagE Unit2
5|
=-{T] Form2

Button1
W} FIREBIRD {SCLConnection 1}

,‘5; Object Inspector
SQLConnectionl TSOLConnection

Properties | Events

Connected [False

ConnectionMame | EMPLOYEEFIREBIRD
Driver FIREBIRD

GetDriverFunc getsSQLDriverINTERBASE
KeepConnection True

LibraryMName dbodb.dll
LoadParamsOnConr [| False
LoginPrompt True
¥ |Mame SQLConnection1
Params (TStrings)
TableScope [t=Table, t=View]
Tag a
endorLib fhclient.dll

Then we place a TButton on the form. First of all, we create a small function
(DBXGetMetaProvider) which, with the help of our SQLConnection, returns a MetaDataProvider.

unit formMain;
interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, WideStrings, DBXFirebird, StdCtrls, DB, SqglExpr,

DbxCommon, DbxMetaDataProvider,
DBXDataExpressMetaDataProvider,
DbxClient, DBXDataStoreMetaData;

type
TForm2 = class (TForm)
SQLConnectionl: TSQLConnection;
Buttonl: TButton;
private
{ Private declarations }
function DBXGetMetaProvider (const AConnection: TDBXConnection)
: TDBXDatakExpressMetaDataProvider;
public
{ Public declarations }
end;

implementation

{SR *.dfm}

function TForm2.DBXGetMetaProvider (const AConnection: TDBXConnection)
TDBXDataExpressMetaDataProvider;

var
Provider: TDBXDataExpressMetaDataProvider;
begin
Provider := TDBXDataExpressMetaDataProvider.Create;
try
Provider.Connection := AConnection;
Provider.Open;
except
FreeAndNil (Provider) ;
raise ;
end;
Result := Provider;
end;
end.

We can use this metadata provider to call a whole host of methods for our database. Here’s a
brief overview. Note the methods like CreateTable, Createlndex, DropTable, etc.

——————————— =]
I DBXMetaDataProvider.TDBXMetaDataProvider

FExecuter:-TDBXSqlExecution
FWwriter:-TDBXMetaData\Writer

I
I
I
+ CheckColumnSupported:Boolean J
+ Create
+ CreateForeignKey I
+ Createlndex |
+ CreatePrimaryKey
+ CreateTable |
+ CreateUniquelndex |
Destroy
DropForeignKey:Boolean J
DropForeignKey:Boolean
Droplndex:Boolean I
Droplndex:Boolean |
DropTable:Boolean
DropTable:Boolean |
Execute |
GetCollection:TDBXTable
IsCatalogsSupported:Boolean J
IsDDLTransactionsSupported:Boolean
IsDescendinglndexColumnsSupported:Boolean I
IsDescendinglndexSupported:Boolean |
IsMixedDDLAndDMLSupported:Boolean
IsMultipleStatementsSupported:Boolean |
IsSchemasSupported:Boolean |
MakeAlterTableSgl:UnicodeString
MakeAlterTableSgl:UnicodeString J
MakeCreateForeignKeySql:UnicodeString
MakeCreatelndexSgl:UnicodeString I
MakeCreateTableSgl:UnicodeString |
MakeDropForeignKeySgl:UnicodeString
+ MakeDroplndexSgl:UnicodeString |
+ MakeDropTableSgl:UnicodeString |
+ QuoteldentifierlfNeeded:UnicodeString
+ ToMemoryStorage J
GetDatabaseProduct:UnicodeString
GetDatabaseVersion:UnicodeString I
GetldentifierQuotePrefix:UnicodeString |
GetldentifierQuoteSuffix:UnicodeString
GetVendor:UnicodeString |
GetWriter:. TDBXMetaData\Writer |
SetWriter J
|
I
I
|

¥ A o FEEIETR O e o TR O o e g

+ DatabaseProduct:UnicodeString

+ DatabaseVersion:UnicodeString

+ |dentifierQuotePrefix:UnicodeString

+ |dentifierQuoteSuffix:UnicodeString

+Vendor:UnicodeString
&A{riter:TDBXMehData*!riter

It is precisely these methods which are the key to being able to manipulate the database. We
now add this source code to our button click method:

procedure TForm2.ButtonlClick(Sender: TObject);
var
MyNewTable: TDBXMetaDataTable;
MyProvider: TDBXDataExpressMetaDataProvider;
MyPrimaryKey: TDBXMetaDatalndex;
MyIDColumn: TDBXInt32Column;
begin

// Get the MetadataProvider from my Connection
MyProvider := DBXGetMetaProvider (SQLConnectionl.DBXConnection);
try

// Create the Table structure
MyNewTable := TDBXMetaDataTable.Create;

try
MyNewTable.TableName := 'DELPHIEXPERTS';

MyIDColumn:=TDBXInt32Column.Create ('ID"');
MyIDColumn.Nullable:=false;
MyNewTable.AddColumn (MyIDColumn) ;

MyNewTable.AddColumn (TDBXAnsiCharColumn.Create ('Members', 50));

// Add the Table in the Database with my provider
MyProvider.CreateTable (MyNewTable) ;

finally
FreeAndNil (MyNewTable) ;

end;

// Now let us create a Primary Key on the ID Field

MyPrimaryKey := TDBXMetaDataIndex.Create;
try
MyPrimaryKey.TableName := 'DELPHIEXPERTS';

MyPrimaryKey.AddColumn ('ID") ;

// Add the Primary Key with my provider
MyProvider.CreatePrimaryKey (MyPrimaryKey) ;

finally
FreeAndNil (MyPrimaryKey) ;
end;

finally
FreeAndNil (MyProvider) ;
end;

Showmessage ('You have created a DelphiExperts Table! Good job!');

end;

The individual steps are documented in the source code as a comment. Having compiled and
started the program, we should now be able to see the new DelphiExperts table in the Data
Explorer (after a refresh).

GExperts Tools Window Help {» | Defaultlayout - | 1 &,
0 65 @~ -1@
nMain I @DBXDaiaExpressMeiaDatavaider] @defau\t [diagram” <3 9% Data Explorer
I /4 Get the MestadatsProvider from my Connsctlon || 30 dbExpress
MyProvider := DBXGetMetaProvider (SQLConnectionl.DBXConnection); @ BLACKFISHSGQL
try (-7 DATASNAP
- ASA
- // Create the Table struturs - ASE
MyNewTable := TDBXMetaDataTable.Create: g EIEHZEEIHD
=R
t “ ?
| @ Fom2 =B = {17-6%9 FECONNECTION
=% EMPLOYEEFIREBIRD
M - Tables
COUNTRY
ﬁ Create DelphExperts Table CUSTOMER
2
M |28
7
M
fing Createtablewithmetadata “
F:
end You have created a DelphiExperts Table! Good job!
A - PROJ_DEPT_BUDGET
i 5 SALARY_HISTORY
V74 & -
e 8 SALES
try By Views
L a - .
B MyPrimaryHey.TableName := '"DEL B CreateTableWithMetaData. dproj - Project Manager | T2 1
MyPrimaryKey.AddColumn ("ID"});
—r

The Delphi 2010 IDE itself uses this interface in the Data Explorer so that we can set up and

modify tables in the IDE. Right click on a table in the Data Explorer and you obtain the option to
edit the tables at any time with “Alter Table".

EXN

o% Data Explorer

¥ty dbExpress

- BLACKFISHSGL
- DATASNAP

- ASA

- ASE

- DB2

=7 FIREBIRD

(-7 FECONNECTION
-3 EMPLOYEEFIREBIRD

B¢ Tables

-0 COUNTRY

[#-G0 CUSTOMER
Refresh
Retrieve Data From Table
Alter Table
Drop Table
Copy Table
Paste Table

Data Type Precision Scale Mullable Primary Key
INTEGER ~ |0 0
CHAR ~ |50 0

-

Double click on the table name in the Data Explorer and you can even edit, add or delete the
data directly in the Delphi 2010 IDE.

5l formMain | Table Design:DELPHIEXPERTS | dbExpress:EMPLOYEEFIREBIRD: DELPHIEXPERTS | | v £
Members

Daniel Magin

Claf Manien

Holger Flick

DELPHI 2010, FIREBIRD AND UNICODE

As already mentioned in the introduction, there was a major revision to dbExpress in Delphi
2007. This library was originally implemented in C++and then in version 2007 was converted to
Delphi, i.e. Pascal. Only a few know that dbExpress was already capable of the basic Unicode in
Delphi 2007. Delphi first started to support Unicode applications in the IDE in the 2009 version.
With Delphi 2010 and, of course, also the C++Builder 2010, we can create our programs with
Unicode support. That said, if you port “older” Delphi programs into Delphi 2010, and
therefore add Unicode support, you should take a few things into consideration:

1. If you use components made by other manufacturers, ensure that these already have
Unicode support and that these are available for Delphi 2010.

2. You'll find a detailed chapter about the changeover to Unicode in the online help — and
this is very much recommended!

3. The new online Wiki from Embarcadero includes a number of articles about the Unicode
conversion: http://docwiki.embarcadero.com/RADStudio/en/Unicode_in_RAD_Studio

4. Registered Delphi 2009 users can download free-of-charge the outstanding book
"Delphi 2009 Handbook” by Marco Cantu — it includes a chapter about Unicode which is
well worth reading.

ano Delphi Registered User Downloads
[- | »] [+ |9 http://cc.embarcadero.com/reg/delphi G] (Oc ich weiss es nicht \l
2 Funv A eev MSv XCodeToolsv All-Access Server leStuff¥ Beliebtv Hausv iPhoneBlogs¥ IPhoneDevy Mobi. sv »>
m s pog Appl g iApp:
TR ULCTOr e r-' Dhed o - Taun POOUCITOE
Available to registered users of Delphi 2008, C++Builder 2008, CodeGear RAD Studio 2009 and Embarcadero All-Access
3.6MB m
- D load
Delphi 2009 Handbook PDF eBook ownioa
"Delphi 2008 Handbook™ PDF eBook by Marco Cantu
Available only to registered users of Delphi 2009, C++Builder 2009 and CodeGear RAD Studio 2009
18.3MB
- - D load
TMS Smooth Controls Pack for Delphi and C++Builder 2009 oumoa -
e — - - — v
——————— -——————————————————————————————————————" ar

5. The last CodeRage 2009 online conference has some free-of-charge downloadable
sessions that also cover Unicode.

COdeRQge 4 Watch Rep|c1ys >>

e Learn from the experts

The Tota”y Technical Online Conference e Interact with other developers worldwide

More than 90+ "Totally Technical" sessions
September 8 - 11, 2009 i
P 2 ¢ All online! No shirt? No shoes? No problem!

http://conferences.embarcadero.com/coderage/sessions

Firebird and InterBase have offered the option of creating databases in Unicode format for
some time now, so we want to create these together in an example. First of all, we require a

http://docwiki.embarcadero.com/RADStudio/en/Unicode_in_RAD_Studio
http://conferences.embarcadero.com/coderage/sessions

new database in Unicode format as the example database from Firebird has not been set up in
Unicode:

/**

**/
[FE* Generated by Daniel Magin - www.DelphiExperts.NET
***/

/**

**/
SET SQL DIALECT 3;
SET NAMES UTFS8;

CREATE DATABASE '127.0.0.1:c:\db\unicodedb.fdb’
USER 'SYSDBA' PASSWORD 'masterkey'

PAGE_SIZE 16384

DEFAULT CHARACTER SET UTFS8;

/**

**/
Vo Generators
‘k‘k‘k/

/*k~k*************************

**/

CREATE GENERATOR GEN TBL TEST ID;
SET GENERATOR GEN_TBL TEST ID TO O;

/*k************************

*x)
VAR Tables
*oxx)

/**

**/

CREATE TABLE TBL TEST (
ID INTEGER,
EXAMPLETEXT VARCHAR (100)
);

/**

*x)
VEES: Triggers
*okx)

/**

**/

SET TERM *~ ;

/**

**/
Vi Triggers for tables
***/

/**

**/

/* Trigger: TBL TEST BI */
CREATE TRIGGER TBL_TEST_BI FOR TBL_TEST
ACTIVE BEFORE INSERT POSITION O
as
begin

if (new.id is null) then

new.id = gen id(gen tbl test id,1);

end

A

SET TERM ; *

This line is important:
DEFAULT CHARACTER SET UTF8;

This is where the new database using this Unicode character set is created. We can also execute
this with an InterBase database. There are a lot of Unicode character sets, but | would always
recommend using UTF-8 if your client doesn’t wish a specific one. The Latin characters as in the
ASCII character set are saved with 8 bit in the UTF-8. This means your database remains slim
and more bytes will only be used for saving purposes if Unicode characters like Japanese, etc.
will be used. For more information, refer also to: http://unicode.org/.

In the Delphi 2010 Data Explorer we now create a new Firebird connection with the name
UnicodeFirebird.

http://unicode.org/

[3% Data Explorer gz
3y dbExpress

(- BLACKFISHSQL

(- [F DATASNAP
(- ASA
[
[

H- 7§ ASE

o @ DB2

=-@ FIREBIRD

-39 FECONNECTION

3% EMPLOYEEFIREEIRD
R Uricoderrebid]
- INFORMIX
- INTERBASE
-7 MssaL
E
e

o MYsaL
o) ORACLE

E‘aMemDaiﬁReader.dpmj - Proj... | QﬁEModeI View &%DBE Explorer

We insert the following values in the “Modify Connection” dialogue:

"
-

Maodify Connection

==

Data source:

"dbExpress (dbExpress Provider)”

Database Name:
User Name:

Password:

127.0.0.1 ¢ \dbwunicodedb fdb
sysdba

Advanced...

=

J [cancel |

It is now important to add the correct character set (namely UTF-8) in the “Advanced” area.
Without this setting, Unicode characters will not be displayed or saved correctly. Generally

speaking, in the client connection you must always have available the correct character set of
your database.

r

Madify Connection =

Data source:

"dbExpress (dbExpress Provider)" Change

Datzbase Name: 127.0.0.1:c\db"wnicodedb fdb
Jser Name: sysdba

Passward: (TITITTTT

-

Advanced Properties W

-
Fale
ServerCharSet UTF&

Time0ut [oK
LIRLPath .
— User_Mame sysdba = -
E Dnver Conhigurabion

DelegateConnection

Product'ersion
E Misc

blobsize -1 -

ServerCharSet

drivemame=FIREBIRD blobsize=-1,commitretain=False databas

In a new VCL form application we now want to enter text with Unicode characters in the
TBL_TEST table. As already shown in the previous examples, we require the following
components:
1. TSQLConnection
a. Property Connectionname: UnicdodeFirebird
b. Property LoginPrompt: False
c. Property Connected: True
2. TSimpleDataSet
a. Property Connection: SQLConnection’
b. Property DataSet->CommandText: select * from TBL_TEST
c. Property Active: True
3. TDataSource
a. Property DataSet: SimpleDataSet1
4. TDBGrid
a. Property DataSet=SimpleDataSet]1
5. TDBNavigator
a. Property DataSet: SimpleDataSet!1

We insert the following code in event SimpleDataSet1->AfterPost so that our changes can also
be saved in the database.

procedure TForm2.SimpleDataSetlAfterPost (DataSet: TDataSet);
begin
SimpleDataSetl.ApplyUpdates (0) ;

end;
The whole thing should then look like this:

#= Object Inspector

SQLConnectionl TSQLConnzcton

File Edit Search View Refactor Project Run Component GExperts Tools Window Help {3 Defaultlayout v #B &
HEB P R-88SIE8E b-lE|lsss ¢~ %~ @
S\ stucture 223! | # welcome Page | [formMain v | O3 Data Explorer
w5+ 30 dbExpress
& 0 Fom2 @ Forma oo] | || 23 Baadishsal
&[] paGridt D EXAMPLETEXT g ASA
-y Columns » & ASE
[E] DBMavigator 1 @ D82
¥ FIREBIRD {5QLConnection 1} 9 FIREBIRD
£ 8 SimpleDatsseti b = -39 FECONNECTION
& Aggregates 2 pBX EJ: -39 EMPLOYEEFIREBIRD
& Constraints 5QLConnection1 SimpleDataSetl P -39 UnicodeFirsbird
Y DataSourcet @ :x;CE)Eg‘EE
1y FieldDefs g MssaL
o, Fields & MrsaL
oy IndexDefs @ ORACLE
oy Params
<[»
I B | [a] Kt

Properties | Events |
Connected True o BgUnicodeExample.dproj - Project Manager
ConnectionName | UnicodeFirebird
Driver FIREBIRD H[Tool Palette
GetDriverFunc | getSQLDriverINTERBASE -
KeepConnection |[¥] True - Q search B - | ‘
LibraryName dbxfb.dll 1 Standard
LoadParamsOnConr [False Additional
LoginPrompt. [False Win32
% |Mame SQLConnectionl | System
params {TStrings) Win 3.1
[TableScope |ItsTable, tsvien] - Dialogs
S ——— i

After compiling and starting our new application, the Windows program, Charmap, helps us to
select Unicode characters with ease. We find Charmap in the C:\Windows\System32 directory.

Organize ¥ Open New folder

-

';ii’ Favorites] L
Bl Desktop
& Downloads
| Recent Places
chajei.ime change charmap chep
4 Libraries 3 E— — P —_ — == ——
@ Documents |
VT E R
Pictures
i Videos —— o o o
— chglogon chgport chgusr chkdsk
+& Homegroup SE— o r— L
S ¢ 3 3L
1% Computer . I l&:« . ' \QL
£ local Disk (7 Rl o -
= charmap Date modified: 7/14/2009 3:14 AM Date created: 7/14/2009 1:41 AM
K;_;’ Application Size: 151 KB

Font : () Meiryo

Ll e
[E %8 |1R|58
&

Characters to copy Imu’é‘
Advanced view

Character set : |'~“a'indows: Japanese - | Go ko Unicode ¢ E

Group by : ’Japanese KanJi by Hiragana v]

Search for : Search

1J=+6697 (x88C3): CJK |deograph

Double click on the individual characters and these are inserted in the text field and from there
we can copy these characters. Then we simply insert the content of the clipboard in our grid.

EXAMPLETEXT
4 Daniel Magin
5 DelphiExperts rocks!
6 ETRREIS

And this way, we have the Unicode character set and therefore the possibility of recording any
character in our database respectively. This therefore demonstrates that the new dbExpress
provider from Embarcadero for Firebird is also Unicode capable. It should also be mentioned
that the Delphi IDE and also the pas files are of course Unicode-capable and therefore Unicode
characters can also be used in the source code. However, when saving the file you will be
prompted to indicate if you wish to save the file in UFT-8 encoding.

onent GExperts Tools Window Help % DefaultLayout v| &1 &),

nml s v <::--rv @

ﬁ Welcome Page | [FormMaln A
Hprocedure TForm?2 . ButtonlClick (Sender: TObject): w3
- | var E
ERENS: string: E
begin E
ﬁﬁﬁﬂﬁ:='ﬂelcum& to stupld code: Uﬁﬂﬁ' k
39 ShowMessage (2 RE EIEI] 5 E
40 R E
- const Msg: string | s ERER: string;
- Lend;
- Hprocedure TForm?.SimpleDal B
bkegin E
- SimpleDataSetl.ApplyUpd E
L end; E
E
L end
|E
- L _..II -1
Confirm “
e e, N
File

W ChUsershdmagin' Desktop\WhitePaper.. \MformMain.pas
contains international characters. Do you wish to save
this file in UTFE encoding? If you choose 'NOY, the
internaticnal characters will be lost,

Yes I [Mo

USING EMBARCADERO CHANGE MANAGER
WITH INTERBASE AND FIREBIRD

Embarcadero® Change Manager™

Version 5.1

Embarcadero Change Manager™ incorporates a set of efficient tools which support us in the
simplification and automation of the database change management. This is also ideal for
administrators and developers who work with different test databases. The key points are:

1. Simplification and automation of database change management
2. Optimisation of development cycles
3. Ensuring availability, performance and maintenance of standards and provisions

The functions of Change Manager for schema comparison and editing, data comparison and
synchronization and configuration testing report database changes, install new versions and
record database performance issues that result from planned and unplanned changes.

By comparing a live database with the snapshot of a schema or a configuration, administrators
can quickly identify changes and remedy problems. By monitoring configuration settings,
database administrators can ensure the compliance of official provisions and performance
standards and maintain the general database performance and availability. Change Manager
supports InterBase, Firebird, IBM® DB2® for LUW, Microsoft® SQL Server, Oracle® and
Sybase®.

With the Change Manager we want to keep two Firebird databases in synchronization. | simply
duplicated the Employee.fdb.

. » Computer » Local Disk (C:) » db

Organize » | | Open Mew folder
0 Favorites - LT
Bl Deskiop || EMPLOYEE.FDB
| database || EMPLOYEE2.FDB
& Downloads || UNICODEDE.FDB
‘E._-_I Recent Places || Unicodesxample.sql
4 Libraries
@ Documents
J’ Music
[E=5] Pictures -

You can download a test version of Change Manager under
http://www.embarcadero.com/products/change-manager . After the installation, we must first
of all register both databases which, in this case, are located on the same computer. We can
perform this task directly from the Change Manager Workbench in the DataSource area by
simply selecting “New | Data Source” from the context menu.

File Edit Run Search Tools Window Help
N-HRiB-F-iv P it~
94 Data Sourc 52 I@ Job Explor} 5. Navigator| = O
lwdR|BES T
| type filter text |

[l Manager Nata Snurces|
Mew 3 ﬁ’ Data Source

g Data Source Group

Cut

Copy
Paste

Delete

B

Rename...

Move...

Refresh

%

Go Home
Go Back
Go Into

Properties

F) Praject Explorer &2 Lz Compliance} =0

[EZ! Change Management

1= 1 items selected

http://www.embarcadero.com/products/change-manager

A dialogue appears in which you can select the desired database driver- here we simply select
InterBase/Firebird.

9 MNew Data Source: New data source Elﬂ“

Register a new data source

Choose the server type and location for your new data source.

Generate a unique name based on the alias or the host name

Data source name: | Mew data source

Select a server type: Select a data source group:

IﬂGEﬂericJDEC =% Managed Data Sources
£'t41BM DB2 for LUW

[ty InterBase/Firebird |
Iﬂ Microsoft QL Server

Iﬂ Oracle
[t} Sybase ASE

[Create a new server type-specific subgroup

< Back Next > Finish

In the following dialogue we can now enter our connection string for our first connection and
also perform a connection test at the same time.

.
_ || [& NewDats source: 127001 B =

Configure a new InterBase/Firebird data source
Enter InterBase/Firebird-specific connection and security credential information for the new

data source.

InterBase/Firebird

Host/Instance:” 127.0.0.1

Port: 3050

Database: * ehdb\employeefdb

Security credentials

User name:™ sysdba

Password: essssssss

LConnect as: [normal «

Auto-connect (Saves and encrypts password)

[Allow trusted connections

“ Test Connection

) Test Connection

@ Connection was successful.

[Enish || Ccancel

We then repeat these steps for our second database employee2.fdb. Afterwards, we should
have access to both databases, and Change Manager in the Data Source area should look like
this. You can rename the connections in the context menu.

w Job Explor} £ Navigater| — O

B wmdk| BE T

type filter text
4 =+ Managed Data Sources (2]
4 ﬁ employee? (Firebird)
[@ Configuration Archive Jobs
[> § Configuration Comparison Jobs
i [{3 Database Objects
[» ﬂﬁ Data Comparison Jobs
[@ Schemna Archive Jobs
[@ Schemna Comparison Jobs
4 |ﬁ employee (Firebird)|
@ Configuration Archive Jobs
[> 4@ Configuration Comparison Jobs
[F@ Database Objects
[ﬁﬁ Data Comparison Jobs
[ﬁ Schemna Archive Jobs
[> @ Schemna Comparison Jobs

In the individual sections we can define so-called jobs which can be executed or monitored for
the selected database.

1. Configuration Archive Jobs
a. Monitor database configurations
2. Configuration Comparison Jobs
a. Keep the configurations of various servers synchronous
3. Database Objects
a. Here we get access to the database structure in order to read the metadata of

the database

94 Data Sourc 3 Iﬁ:lJ-:l:l Explor | &=t Mavigator = B8

bR EE T
type filter text
. @ Schema Comparison Jobs -

4 B employee (Firebird 2.1.0.0)
& Configuration Archive Jobs
» ;_.}?‘ Configuration Comparison Jobs
4 [{3 Database Objects

. (% Blob Filters

- B, Check Constraints

. A% Domains

. (1) Exceptions

. ¥4 Foreign Keys

. fx Functions

4 '2¥ Generators (2)
> 138 CUST_NO_GEM &
- 128 EMP_NO_GEN

4 Indexes (12)
> CUSTOMER.CUSTMAMEX
s CUSTOMER.CUSTREGION
> DEPARTMENT.BUDGETX
> EMPLOYEE.NAMEX
> JOB.MAXSALX
s JOB.MINSALXY

T o e Y)

m

4. Data Comparison Job
a. We use such jobs to keep the content of the data tables, i.e. the records,
synchronous. Also subselects with where conditions can be generated. For
example, from a master database only those records of a specific client can be
compared and maybe synchronised in another database
5. Schema Comparison Job
a. This is where you can synchronise the structure of the database, i.e. if, for
example, a new table is to be set up in employee, this should also be
automatically synchronized in the employee 2

It is exactly this scenario (5) that we want to execute now, and to do this we select the command
“Create New" from the context menu under “Schema Comparison”. A wizard then appears for
the settings of the job:

1. The database connections are defined in the Overview
area.

L8 *Sync Employee to Employee2 i

=0
|# Overview | > Refinements | > Mapping | [Options | > Notification | > History @ - 'I)T__.If'
¥ Step 1: Select a source and target(s) to compare and name the job next >
g Create or Modify 2 Schema Comparison Job

Job Name and Description

MName Maotes

Sync Employee to Employeed|

Project: Change Management

[] Track results in Compliance Explorer

Job Sources

Name: employee Name: employee2
Type: Firebird Type: Firebird
Heost: 127001 Host: 127.0.01
EI_';I, Change Data Source EI_';I, Change Data Source
@ Use Live Source @ Use Live Source
Use an Archive Use an Archive

> Add More Targets

2. In Refinements we simply deselect the objects that we do not wish to synchronise.

=0
> Overview | [Refinements | > Mapping | > Options | > Notification | > History @ fiu)
¥ Step Z: Select the objects, types, and owners from the source to compare with the target(s) << back next>>

* Object Refinement

a [7]93 All Types 4 (@l 127.001
1 [¥]93 Database Types [) Blob Filters

@12~ Check Constraints
i ‘*sg Damains

3@ Exceptions

i 5% Foreign Keys

7| fx Functions

128 Generators

1 [#] 92 Tables and Dependencies

EEE

==

Indexes

v
V] R Primary Keys
v &

F Procedures
7] &4 Roles

7| [lbe Shadows
Tahles

¥k Triggers
U5 Unique Keys
M Users

&a Views

vV VYV VY VYV VY YV YT YvTYT

View by Cwner @ View by Type

Overview Reﬁnements] Mapping| Optionsl Noti'ﬁcatiorl| Histor}r|

3. Mapping is not required for InterBase/Firebird, so we can skip this area.
4. Under Options we can set further settings, in this example we’ll just leave everything as
it is, but note that the job is set to Manual Synchronization Method and not Automatic —

so this will only be processed once the job has been called.
» =g

> Overview | p> Refinements | p> Mapping | [Options | = Notification | > History @ i)

¥ Step 4: Customize the job with the settings listed below =< back next>>

-~

 Synchronization Options

Synchronization Method

Synchronization options for running the scripts.

@ Manual

Change Manager will run the comparisen and store the results for review. Synchronization scripts can be generated manually or by
using one of the notification optiens. Job results can be reopened on the history tab for review once a job has run and been saved.

() Automatic N |

Change Manager will automatically synchronize the target to match the source after the comparison has successfully
completed. This will disable tracking results in Compliance Explorer.

~ Include Objects Options

Exist in Source Only (Create)

Include ebjects that enly exist on the source in the comparison results

Exist in Source and Target and Don't Match (Alter)

Include objects that differ in the comparison results

Force Extended Alter

Always drop and recreate objects that do not match instead of using an alter script

e - e .
Overview | Refinements | Mapping |Options| Notification | History|
5. We can use the Notifier area to arrange for an email to be sent to us, e.g. if an error
occurs during the job execution.

We are now ready and can run the job by clicking on the Start button which is located at the top
right of the window.

As both databases have been identical so far, a 100% match should appear.

| View Report =l Export Results...

Comparison Results
Target Task Progress Compare Index Res
employee Compare Done with 0 errors 100% Match Q.
4 T | 3

Remember the program we used with metadata mechanisms for setting up a new table? We
use that again here. We want to set up another table DelphiExperts in our Employee database.

File Edit Run Search Tools Window Help
Ci~E @)~ 5 ix R I R i € Database Ch...
Lxm =
B3 Data Sourc - = | = 52 (]
—.] : - i e — | [pResutts @ =))
|typaﬁltertext @uvl L » WhitePaperDanielMagin » CreateTableWithMetadata » 'l"H Search CreateTableWithMe; pel
M
Bﬁa"aga Organize = Open Sharewith » New folder
empl
ﬁg T s “ Name Date modified Type Size =il | Close results
L'xa ol Bl Desktop J MedelSupport_CreateTableWithMetaData 12/6/2009 12:56 PM File folder
7 D| | database CreateTableWithMetaData 12/6/20091:00 PM Delphi Project File 1KB
L & Downloads CreateTableWithMetaData 12/6/20091:30 PM Delphi Project File 5KB |2
s s “E] Recent Places | CreateTableWithMetaData.dproj.local 12/6/20091:30 PM LOCAL File 2KB
(% empl [l CreateTableWithhetaDat. 12642000 1:06 BA_ Annlication. 042 KR
7 Libraries @ Form2 = | @&
/£ Documents
o Music [} View Report [Export Results...
[E] Pictures Create DelphiExperts Table I -
o Createl
= - Compare Index Res|
o ppiica Createtablewithmetadata
L | 100% Match Q|
——————— —
You have created a DelphiExperts Table! Goad job!
@ Project Explorer &2 El Compliar
[Change Management
.
< m 3
Overview | Refinements | Mapping ‘ Options | Naotification |H\;tory|Comparison Results
i
Now we start the comparison again and see that
Progress Compare Index Results Resolution

Done with O errors 983 Match 2, Show Individual Results ~ Generate Sync Script

Change Manager has precisely detected that the structure of both Firebird databases are not
identical. If we enable Generate Sync Script, Change Manager generates the correct SQL script
to use so that we can transfer the changes to the other database.

-— Embarcadero Change Manager Synchronization Script

-- FILE : Alter DDL for employee? (vs employee)
-— DATE : Dec 8, 2009 12:43:09 AM

—-— SOURCE DATA SOURCE : employee

—-— TARGET DATA SOURCE : employee2

CREATE TABLE DELPHIEXPERTS

(
ID integer NOT NULL,
MEMBERS char (50) DEFAULT NULL

’

ALTER TABLE DELPHIEXPERTS
ADD CONSTRAINT INTEG 82
PRIMARY KEY (ID)

’

Now we've covered some of the topics of Change Manager with InterBase and Firebird. Refer
to the Embarcadero web site at http://www.embarcadero.com/products/change-manager for
more information and tutorials.

CONCLUSION

dbExpress and the latest Firebird driver from Embarcadero offer the developer a great
possibility of programming slim and quick applications. The developer can also switch over to
other databases with dbExpress support at any time and therefore no longer has to establish
himself on just one database. All the examples shown can be applied very simply to all the
supported databases with dbExpress Provider.

http://www.embarcadero.com/products/change-manager

ABOUT THE AUTHOR

Daniel Magin has been involved in a number of international software projects for over 20 years
now. He is a trainer and consultant specialising in databases, client server architecture, multitier
and web applications. Daniel has been a speaker on numerous occasions at international
conferences in Europe, USA, United Arab Emirates and Asia, including topics regarding OOP,
Microsoft .NET framework, Delphi, InterBase and much more. Daniel is an external software
consultant for Embarcadero Inc., responsible for Delphi and InterBase, and is a founding
member of the DelphiExperts with Olaf Monien and Holger Flick.

EMBEARCADERO
TECHNOLOGIES.

Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application
developers and database professionals so they can design systems right, build them faster and
run them better, regardless of their platform or programming language. Ninety of the Fortune
100 and an active community of more than three million users worldwide rely on Embarcadero
products to increase productivity, reduce costs, simplify change management and compliance
and accelerate innovation. The company’s flagship tools include: Embarcadero® Change
Manager™, Embarcadero® RAD Studio, DBArtisan®, Delphi®, ER/Studio®, JBuilder® and
Rapid SQL®. Founded in 1993, Embarcadero is headquartered in San Francisco, with offices
located around the world. Embarcadero is online at www.embarcadero.com.

http://www.embarcadero.com/

